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Measurement of the second normal stress difference for a highly elastic, constant viscosity 'Boger fluid' is 
reported. Two very different experimental techniques have been used: (1) measurement of the height of 
the free surface in rod-climbing flow; (2) measurement of the pressure distribution in cone-and-plate 
shearing flow. The second normal stress difference is at least 30 times smaller in magnitude than the first 
normal stress difference, and opposite in sign. The results should prove useful in distinguishing between 
the various constitutive equations proposed for Boger fluids. 
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INTRODUCTION 

There is a great need for the development of numerical 
methods for predicting the flow behaviour of highly 
elastic liquids in polymer-processing type flows t'2. Such a 
development would allow the polymer engineer to 
rationally design processing equipment like extruders, 
thereby avoiding the numerous flow instabilities which 
have been observed in thermoplastic materials 3. To this 
end, model elastic liquids have been studied experi- 
mentally 4-~s and simulated numerically ~6-23, with the 
goal of achieving consistency between theory and experi- 
ment. A suitable model elastic liquid is both convenient 
to study experimentally, and has a known constitutive 
equation 24, without which numerical simulation is im- 
possible. Once consistency between theory and experi- 
ment is achieved for these model systems, it will become 
plausible to attempt numerical simulations of more 
complex fluids like commercial polymer melts. 

Perhaps the most widely studied model system for this 
application is the so-called 'Boger fluid', introduced by 
Boger in 197725. For a discussion of the experimental 
advantages of Boger fluids, see reference 4. On the basis 
of their properties in simple shear flow 9'10'26'27, Boger 
fluids were historically believed to obey a rather simple 
constitutive equation, the Oldroyd-B equation 28. Conse- 
quently the Oldroyd-B equation has been widely studied 
numerically and theoretically 16'2°'22'29-35, and numerous 
experimental papers on Boger fluids 4-13'25-27'35-39 have 
appeared in the literature. Unfortunately, the consistency 
desired between numerical simulations and flow visual- 
ization experiments has not yet materialized. For example, 
the simulations are unable to predict the various vortex 
patterns observed in axisymmetric contraction flows of 
Boger fluids 2°. A possible cause of this discrepancy 
between theory and experiment is inadequacy of the 
Oldroyd-B constitutive equation. To salvage the use of 
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Boger fluids as model elastic liquids, the Boger fluid 
constitutive equation must be further developed and 
tested. This can be accomplished via measurement of as 
many Boger fluid material functions as possible. In 
particular, the authors of a recent paper 39 have advocated 
second normal stress difference (N2) measurements in 
order to distinguish between two possible constitutive 
equations for Boger fluids (i.e. the Giesekus equation 4° 
and the Bird-DeAguiar equation41). The value of N2 
also appears to be an important determinant of flow 
stability in certain types of flOW 32'35'42. 

For these reasons we have measured the second normal 
stress difference material function for a typical Boger fluid 
(polyisobutylene dissolved in oligomeric polybutene). Of 
the three material functions defined for polymers in 
simple shear flow 43, N2 is least often reported in the 
literature, probably because it is the most difficult to 
measure. In our literature review, we have identified two 
earlier papers reporting N 2 values relevant to the data 
presented here. Keentok et  al. 44 reported N 2 values close 
to zero ( - N 2 / N  ~ < 0.005) for a Boger fluid consisting of 
polyacrylamide dissolved in maltose and water. Their 
results are consistent with our measurements, though we 
employed a different measuring technique on a Boger 
fluid of a different formulation. In recent years, Boger 
fluids containing polyisobutylene as the solute have 
replaced those containing polyacrylamide in popularity 
among rheologists, perhaps due to their decreased 
tendency toward solvent evaporation. For Boger fluids 
of this type, the only relevant N 2 study we have located 
is a recent rod-climbing paper by Hu et al. 45. The fluid 
investigated by Hu et al. (fluid 'MI') has the same 
components as the Boger fluid that we studied, but with 
a higher polyisobutylene concentration (0.24 vs. 0.1%). 
This may be the reason why Hu et al. report a much 
h i g h e r  N 2 value ( -  N2/N l = 0.11-0.12) than our measure- 
ments indicate. 

Apart from a desire to clarify the Boger fluid constitutive 
equation, we are also interested in comparing and 



evaluating different experimental techniques for N 2 
measurement. An early survey of the various techniques 
is contained in reference 46. In the Results section N 2 
measurements are presented for a standard polymeric 
liquid available from NIST 4v. For comparison's sake, it 
is hoped that other research groups involved in N2 
measurement will procure and investigate the same 
reference material from NIST. Two reasonably successful 
techniques for evaluating N2 are measurements of the 
free surface height in rod-climbing flow 48, and measure- 
ments of the pressure distribution in cone-and-plate 
shearing flow. The latter technique was pioneered in our 
laboratory by the late E. B. Christiansen 49'5°. Application 
of both of these techniques to the same fluid is virtually 
without precedent. In 1983 an international effort was 
made to evaluate various techniques of N 2 measure- 
ment 51. The evaluation was accomplished by applying 
the various N 2 measurement techniques to the same 
polymeric liquid (fluid 'DI') and comparing the results. 
Christiansen's pressure measurement technique was 
judged to be a superior method51 ; the use of rod-climbing 
measurements to estimate N 2 was  not evaluated at that 
time. Recently rod-climbing results have been published 
for fluid D145; the resulting N 2 estimates are in good 
agreement with the N 2 values determined in the 1983 
study. In this paper we also demonstrate good agreement 
between N2 estimates from rod-climbing studies and N 2 
estimates from the pressure distribution in cone-and- 
plate shearing flow. 

EXPERIMENTAL 

Polymeric mater&& 
Polymeric melts are characterized by large elasticities, 

and shear viscosities which may vary by three orders of 
magnitude, depending on the shear rate 24. On the other 
hand, a suitably formulated Boger fluid is virtually 
non-shear-thinning, and yet has elasticity comparable to 
a polymer melt 27. Hence by using Boger fluids in 
polymer-processing type flows, it is possible to separately 
assess the effects of elasticity and shear-thinning on the 
flow field. Reference 4 discusses the numerous experi- 
mental advantages of using Boger fluids as model elastic 
liquids. The prescription is now known for formulating 
Boger fluids 1°'26 and this prescription may be varied in 
order to vary the level of fluid elasticity. Boger fluids 
typically consist of a trace amount of an ultra-high 
molecular weight polymer, dissolved in a very viscous 
Newtonian solvent. The relaxation time or elasticity of 
such a solution is qualitatively predicted by the Zimm 
theory 24, which is believed to describe the dynamics of 
the solution at low deformation rates 1°'26. According to 
the Zimm theory, the elasticity should increase as the 
second power of the solvent viscosity. The solvent used 
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to formulate the Boger fluid reported on in this paper 
has a viscosity four orders of magnitude larger than the 
viscosity of a conventional solvent. Hence the Zimm 
theory explains why this Boger fluid is extremely elastic. 

The first Boger fluids introduced in 1977 consisted of 
dilute solutions of polyacrylamide in maltose/water. This 
aqueous type of Boger fluid has excellent rheological 
properties, but also has an unfortunate tendency for 
solvent evaporation. By employing 'organic' Boger fluids 
consisting of polyisobutylene dissolved in oligomeric 
polybutene, the evaporation problem can be eliminated, 
while retaining the desirable rheological properties. 
Consequently the frequency of investigation of organic 
Boger fluids has rapidly increased since their introduction 
in  198310'11'13'15'26'27'35'37-39"45. Properties of three 
organic Boger fluids with varying polyisobutylene mol- 
ecular weights were reported by one of the authors of this 
paper in a previous study 3s. In this earlier study, flow 
instabilities were observed for the two Boger fluids 
containing very high molecular weight polyisobutylenes. 
To avoid the complications of a flow instability, poly- 
isobutylene of a lower molecular weight (nominal M 
1 × 106) was used to construct the Boger fluid investigated 
in this paper. Table I describes the composition of the 
Boger fluid formulated in this laboratory for N 2 measure- 
ment. Apart from the relative weight percentages of the 
components, this Boger fluid is identical to the least 
elastic polyisobutylene Boger fluid described in reference 
38. As expected, no flow instabilities were observed for 
this Boger fluid in the cone-and-plate rheometer. Both 
polymer components are of broad and unknown poly- 
dispersity. Polydispersity is typical of virtually all Boger 
fluids discussed in the literature, and in fact polydispersity 
may contribute to the unusual rheological properties of 
Boger fluids. According to the suppliers, the poly- 
isobutylene molecular weight is nominally 1.3 × 106. This 
nominal molecular weight was verified by intrinsic 
viscosity measurements 52 (Table I) in a Ubbelohde 
viscometer with a wall shear stress of ~ l . 5 P a .  
Intrinsic viscosity measurement cannot be performed to 
determine the polybutene molecular weight, which is 
nominally 950. However, rheological measurements on 
the oligomer are consistent with a molecular weight of 
this order of magnitude. In accordance with published 
formulations of Boger f lu ids  1°'26'27, a polyisobutylene 
concentration of approximately 1000 ppm was chosen. 
Given the chemical similarity between the repeat units 
of polybutene and polyisobutylene, one would expect the 
oligomer to be a good or athermal solvent for the 
polyisobutylene. Based on the assumption of an athermal 
solvent, one estimates that the polyisobutylene overlap 
concentration e* is approximately 0.1 gd1-1 (ref. 53). 
Since this is close to the actual polyisobutylene concen- 
tration, the characterization of Boger fluids as 'dilute' 

Table 1 Polyisobutylene Boger fluid components 

Weight Density Boiling point 
Component (%) Molecular weight (kg m - 3) (~C)  Manufacturer 

Polyisobutylene (PIB) 0.l 1.3 × 106 (nominal) 918.0 Aldrich 
1.35 × 106 (viscosity-average)" 

Polybutene (Parapol 950) >98.5 950 (nominal) 890.4 Exxon 
2-Chloropropane < 1.4 78.5 859 35 Aldrich 

The viscosity-average value is obtained from the intrinsic viscosity measurement for the PIB toluene system at 30°C 
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polymer solutions may be somewhat questionable. How- 
ever, by separately measuring the viscosity of the solvent 
(polybutene + 2-chloropropane) and the Boger fluid, it is 
estimated that the polyisobutylene intrinsic viscosity is 
only ~ 5 dl g-1. This is less than one would expect for 
an athermal solvent 52, which suggests that c* is greater 
than 0.1 g dl-  1 (c* ~ 1/intrinsic viscosity). 

N2 estimation from pressure distribution measurements 
Complete specification of the state of stress of an 

isotropic fluid in shear flow requires the determination 
of three material functions: the viscosity (r/), the first 
normal stress difference (Na), and the second normal 
stress difference (N2). The defining equations for these 
quantities are 43: 

, = r I , d ~  (1) 

Nx ~--Hll  -- I-I22 (2) 

N 2 --- I-I22 - -  I-I33 (3) 

where ~ denotes the shear rate, and II u denotes the i,j 
component of the total stress tensor (i.e. shear stress + 
pressure). Following the usual rheological convention, 
a 1 subscript denotes the flow direction, a 2 subscript 
denotes the velocity gradient direction, and a 3 subscript 
denotes the neutral direction. For example, in the 
cone-and-plate rheometer, we define a spherical co- 
ordinate system with the origin located at the apex of 
the cone. In this geometry, the 1 direction corresponds 
to the azimuthal angle ~0, the 2 direction corresponds to 
the polar angle 0, and the 3 direction corresponds to 
the radial coordinate r. The normal stress difference 
coefficients, W1 and qJ2, are defined by 

qu I = N1/~ 2 (4) 

~2  = N2/7 2 (5)  

Measurement of the first two material functions, ~/and 
q'l,  is easily accomplished on commercially available 
cone-and-plate rheometers. The N 2 measurement how- 
ever, is much more difficult, and generally requires 
custom-designed equipment. One of the most reliable 
techniques of N2 measurement is to infer its value from 
the measured pressure distribution in a cone-and-plate 
shearing flow 49-5x. The radial momentum balance equa- 
tion can be used to derive a relationship between the 
pressure distribution and N243" 

- I I o o - P o =  - (N~ + 2Nz)log(r/R)-N 2 (6) 

In equation (6), Po is the atmospheric pressure, R is the 
radius of the cone and - H o o - P  o is the net vertical 
pressure force exerted by the liquid on the cone at a 
particular radial position r. For a given shear rate in the 
cone-and-plate rheometer, N1 and N z are constants. 
Hence, equation (6) predicts that if we plot the net 
pressure force against the logarithm of the radial position, 
we should obtain a straight line with a slope of 
- N ~ - 2 N  2. The slope of this line, in conjunction with 
an independent measurement of N 1, gives us an estimate 
of N 2. Alternatively, if we can extrapolate the pressure 
distribution to the rim of the cone, then the net pressure 
force at this location should equal - N2. The assumptions 
which must be satisfied in order for equation (6) to apply 
are essentially the same assumptions which must be 
satisfied in order to measure the true polymeric viscosity 
in a cone-and-plate rheometer. In particular, a steady 
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Figure 1 Cone-and-plate rheometer with flush mounted pressure 
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Figure 2 Net vertical pressure force as a function of radial position 
in cone-and-plate rheometer for NIST rheology standard. Shear rates 
(s- l ) :  1.16 ( 0 ) ;  5.8 ( x ) ;  9.2 ( + )  

one-dimensional homogeneous shearing flow must be 
established when the polymer is sheared in the narrow 
gap between the cone and the plate. This is a reasonable 
assumption for most polymeric liquids; consequently, 
cone-and-plate rheometers are widely used in rheological 
research. If this assumption is satisfied, then it is not 
necessary to know the constitutive equation of the 
polymer in order to measure its three material functions 
r/, qJl, and qJ2. 

The schematic diagram in Figure I shows how the 
pressure distribution is measured in the cone-and-plate 
rheometer used in this study. Four miniature pressure 
transducers are located at four different radial positions 
on the rheometer plate. The transducers are mounted 
flush with the interior surface of the plate, thereby 
avoiding the 'hole pressure errors' documented in early 
investigations of this type 46. The pressure transducers 
were custom-built in our laboratory over the last year, 
following the design of the late E. B. Christiansen and a 
patent by Dimeff and Harrison 54. For details of the 
transducer design, the detection circuit, and the data 
acquisition system, see reference 55. The data presented 
in Figure 2 indicates that these transducers are small 
enough (diameter---3.0 mm) relative to the size of the 

2002 POLYMER, 1991, Volume 32, Number 11 



rheometer plate (diameter = 74.0 mm) to allow measure- 
ment of the 'local' pressure at a given radial position, as 
required by equation (6). Despite their small size, these 
transducers are extremely sensitive, capable of measuring 
pressures as low as 1 Pa. 

Because equation (6) for the pressure profile is derived 
without recourse to a particular constitutive equation, 
this N z measurement technique is not restricted to a 
particular shear rate regime. This should be contrasted 
with the rod-climbing method (see below), which is only 
valid in the second-order flow regime 48. In practice, the 
lower shear rate limit for applying equation (6) to N2 
measurement is determined by our ability to measure the 
'true' pressure distribution in the flowing polymeric fluid. 
Fortunately, two consistency checks are available to 
judge the accuracy of the measured pressure profile. First, 
the net pressure force measured must exhibit a logarithmic 
dependence on radial position, in accordance with 
equation (6). Second, the integral of the measured 
pressure profile over the surface of the rheometer plate 
can be used to obtain an estimate for N 1. This estimate 
can then be compared to an independent measurement 
of N1 with the extremely sensitive normal spring attached 
to the plate of our R-17 Weissenberg rheometer. The N2 
values are reported here only at shear rates for which 
both of these cross-checks are satisfied. Using these 
criteria, the minimum shear rate for N2 measurement on 
the Boger fluid of this paper is 2.3 s- 1. At this shear rate, 
the Boger fluid N 1 value is ~15 Pa, which exceeds 
considerably the sensitivity of the miniature pressure 
transducers. This N 2 measurement technique appears to 
be limited by the accuracy of the alignment of the 
transducers with the rheometer plate, and not by the 
transducer sensitivity 5s. 

N 2 estimation from rod-climbing measurements 
One of the earliest and most convincing demon- 

strations of polymer elasticity is the tendency of the free 
surface of a polymeric liquid to climb the shaft of a 
rotating rod (Figure 3) 24'43. In 1973 Joseph et al. 48 
analysed the equations of motion via a perturbation 
scheme, and successfully related the height of the climb 
to the fluid material functions in shear flow. This analysis 
takes into account fluid inertia and surface tension, and 
is essentially rigorous, subject to certain restrictions 
discussed below. Subsequently rod-climbing measure- 
ments have been used to infer the values of fluid material 
functions in shear flow, especially N245'56. The theor- 
etical analysis can be simplified considerably by choosing 
rod diameters small enough to make inertial effects 
negligible. In this case, the theory predicts that the height 
of the free surface h (at the rod) depends on the rod 
angular velocity o9 in the following fashion48: 

4aflo9 2 
h=hs.+ (7) 

+ 

where/~ is the 'climbing constant' (=0.5q ~° + 2.0qJ°), hs 
is the static climb at o9 = 0, 7 is the liquid surface tension, 
p is the liquid density, a is the rod radius and g is 
gravitational acceleration. 

A zero superscript on a rheological property such as 
W1 denotes the limiting zero shear rate value. If one can 
accurately measure the height of climb as a function of 
rod rotation speed, then equation (7) can be used to 
calculate the fluid climbing constant /~. The calculated 

Second normal stress difference: J. J. Magda et al. 

Rheometrics System IV steady servo motor 

rotating rod 

polymer solution 

aluminium fluid vat 

System IV transducer 

Figure 3 System IV as modified for rod-climbing measurements 

climbing constant can then be used in conjunction with 
an independent measurement of wo to calculate N2 (or 
its equivalent, qj0). 

The simplicity of this method is one of the principal 
advantages of rod-climbing measurements. Disadvantages 
to this technique arise from the necessity of ensuring that 
the theoretical assumptions made in deriving equation 
(7) are satisfied in the experiments. Equation (7) is derived 
assuming that the rod/liquid contact angle is 90 °, and 
also that the measurements are made in the 'second- 
order' flow regime 4s. The latter restriction appears to be 
more serious, since it implies that N2 cannot be measured 
at high shear rates. In fact, for higher shear rates a 
'heuristic' criterion has been proposed to qualitatively 
predict rod-climbing flows sT. Isotropic liquids with 
'fading memory' are expected to exhibit a second-order 
flow regime at low deformation rates 24. But, it is 
impossible to predict a priori the maximum allowable 
rotational speed of the rod (ogmax) without knowing the 
constitutive equation of the polymer. In practice one 
needs to judge from the experimental data itself the 
rotational range over which the measured climb is 
quadratic in ~o, as predicted by equation (7). One must 
hope that within this rotational speed range, the height 
of the polymer climb is large enough to measure. 

Clearly it is experimentally convenient if the polymer 
exhibits large climbs within the second-order flow regime, 
and this is a major reason for applying this technique to 
Boger fluids. Boger fluids are believed to exhibit an 
unusually large second-order flow regime. In the rod- 
climbing measurements, care was taken to make sure 
that h does, in fact, exhibit quadratic dependence on o9. 
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As anticipated, it was observed that the rod-climbing 
technique works well with Boger fluids. For  a given fluid 
at a fixed rod rotation speed, equation (7) also predicts 
the climbing height as a function of rod size. This 
prediction was used as an additional check on our data, 
to ensure that ~o did not exceed Ogre, x (see Results). 

Though determination of the climbing constant fl is 
relatively simple for Boger fluids, separation of/~ into 
qjo and Wo contributions is considerably more difficult. 
If rod-climbing is to be used as an N 2 measurement 
technique, then ~o  must be independently determined 
on another rheometer, which implies a different flow 
geometry. Often the rheometer used to measure W1 
cannot probe shear rates as low as those present in the 
rod-climbing experiments. This can be a serious limitation 
if q'~ is a strong function of shear rate, because q'l  must 
then be extrapolated to zero shear rate. 

The Rheometrics Systems IV rheometer in this labor- 
atory was modified to function as a rotating rod 
viscometer (Figure 3). Precisely machined steel rods were 
attached to the steady servo motor  of the System IV. The 
Boger fluid was contained in a cylindrical aluminium vat 
of diameter 6.35 cm and depth 3.3 cm. The rods were 
immersed in the fluid to a depth of 2.0 cm, with careful 
attention to the rod alignment and concentricity with 
respect to the vat. The steady servo motor uses an 
air-bearing, and its rotational speed has been carefully 
calibrated. Climbing heights of the fluid free surface were 
measured from photographs taken with a Nikon F 
camera, with a five-fold magnification. The depth of the 
rod was found to have little effect on the measured climb. 
Equation (7) for the height of the climb was derived 
assuming a semi-infinite fluid container 4a. In these 
experiments, the ratio of the vat diameter to the rod 
diameter (2) was varied between 8 and 20. Joseph et al. 56 
recommend that 2 be at least 10, and 2 values as low as 
10.5 have been reported in the literature 45. Consequently, 
we believe that edge effects are minimal with our smallest 
diameter rod. However, to our knowledge, no systematic 
study of edge effects in rod-climbing flows has ever been 
published. 

In order to use rod-climbing measurements to determine 
fluid material functions, the rod-rotation speed must not 
exceed the limit of the second-order flow regime. At the 
lower end, the measurements are limited by the ability 
to measure small climbing heights. Based on a photo- 
graphic magnification of 5, one would estimate a 
resolution of 0.1 mm in height measurement. A more 
serious source of measuring error is attributable to the 
large static rise of a Boger fluid (hs~0.5mm).  High 
viscosity polymers are notorious for hysteresis and a slow 
approach to equilibrium in surface tension measure- 
ments 58. Consequently it was decided to restrict our 
measurements to flow regimes for which the measured 
climb is significantly greater than the static rise. For  the 
Boger fluid studied, this restricts measurements to rod- 
rotation speeds greater than 0.8 Hz. Strictly speaking, 
in order for the theory to apply, the static rise should be 
zero. However, past investigations have shown that this 
is not a serious limitation 4a. The temperature of the 
experiments was carefully monitored but not controlled. 
Experiments were discontinued if the temperature de- 
parted from 25°C by more than 0.1°C. Based on 
measurements of the temperature dependence of qJ~ in a 
cone-and-plate rheometer, we do not believe that tem- 
perature fluctuations are a major source of error. 

RESULTS AND DISCUSSION 

Cone-and-plate rheometer 
In this section, data is presented as measured on a 

Weissenberg R-17 cone-and-plate rheometer, suitably 
modified for N2 measurement as described in the 
Experimental section. The Weissenberg temperature bath 
was used to fix the Boger fluid temperature at 25 ___0.1°C. 
Figure 4 and 5 present the shear rate dependence of the 
viscosity r /and the first normal stress difference Nt.  As 
expected, the Boger fluid is virtually non-shear-thinning, 
with a zero-shear-rate viscosity r/o = 23.7 + 0.2 Pa s. Figure 
5 demonstrates that Nt is approximately a quadratic 
function of shear rate, ~. Because Figures 4 and 5 are 
very similar to figures appearing in previous reports on 
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Figure 4 Steady shear viscosity as a function of shear rate for the 
Boger fluid 
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Figure 5 First normal stress difference as a function of shear rate for 
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shear rates ( × ) 

2004 P O L Y M E R ,  1 9 9 1 ,  V o l u m e  32,  N u m b e r  11 



Boger fluids, it is concluded that this fluid is rheologically 
typical of polyisobutylene Boger fluids as a class. 

At low shear rates, all isotropic liquids with 'fading 
memory' are expected to show a second-order flow 
regime 24 where N 1 --Wo~2. If the approximate quadratic 
behaviour of N1 in Figure 5 is taken as an indication of 
second-order flow behaviour, then the important fluid 
property Wo can be easily calculated. Logarithmic plots 
like Figure 5 have long been used by Boger fluid 
investigators 9'1°'26'27 to estimate q,o. 

However, the authors of a very recent paper argue that 
this method underestimates the true value of qjo. 
According to Quinzani et a/ .  39, previous researchers have 
been misled because they have not investigated sufficiently 
low shear rates. This assertion is largely based upon 
data from dynamic oscillatory measurements of poly- 
isobutylene Boger fluids. 

It is beyond the scope of this paper to attempt to 
resolve this controversy concerning the correct value of 
Wo for Boger fluids. Nonetheless some subtle N 1 trends 
will be presented which may have a bearing on this 
question. One cannot discern these subtle trends in a 
logarithmic plot like Figure 5, hence Figure 6 contains 
a semi-logarithmic plot of W~ against shear rate. Recall 
that W1 should be constant in the second-order flow 
regime. Contrary to the impression generated by Figure 
5, it is noted in Figure 6 that q~l is not truly a constant 
in any measurable shear rate range. Nonetheless, there 
is a plateau shear rate regime (2-15 s -1) where qJl is 
relatively constant (within 20%). The plateau value of 
W1 is 2.65___0.1 Pa s 2. At higher shear rates, W1 shows 
the expected sharp decrease associated with the finite 
length of the polymer chains. Closer inspection of the 
data in the plateau region reveals that the various h°l 
values are not randomly scattered about the mean. 
Instead, both data sets in Figure 6 exhibit an inflection 
point at a shear rate of approximately 6 s- 1. Remarkably 
similar results, including the inflection point, were 
reported for the Boger fluids studied by Quinzani et al. 39. 

If the predictions of Quinzani et al. 39 a r e  correct, then 
the value of WI should increase above its plateau value 
at very low shear rates. Consequently we pushed our 
measurements of W1 to the lowest shear rates possible 
at 25°C. In Figure 6 the W1 values clearly do rise as the 
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shear rate drops below 2.0 s-1. However, N1 is barely 
5 Pa for the lowest shear rate reported. With such low 
stresses, we found that it was impossible to check our 
W1 measurements with the local pressure transducers 
flush-mounted on the rheometer plate (Figure 1). Conse- 
quently the W1 values for shear rates below 2.0 s- 1 are 
considered to be less reliable than the values at higher 
shear rates. 

The rise in ud 1 at low shear rates is reproducible, with 
the data points in Figure 6 below 2.0 s-1 representing 
the average of several data sets. This of course does not 
rule out the possibility of a systematic error. Such low 
stress measurement is possible only because the rheometer 
is equipped with large plates (R = 37 mm), a computerized 
data acquisition system, and a sensitive light spring 
specifically designed to measure small normal forces. 
Even with these experimental advantages, we have been 
unable to clearly determine the zero shear rate limit of 
~1. The prediction of Quinzani et al. 39 concerning the 
true value of wo appears to be very difficult to verify via 
steady shear measurements at a single temperature. 

To complete a determination of the polymer material 
functions in shear flow, one needs to measure N2. There 
are previous reports of N 2 data from this laboratory 49-5 ~. 
However, this paper contains the first reported results 
obtained with our rheometer after redesigning it last year 
(see Experimental). To test our new design, we first 
investigate a standard polymer solution with known N 1 
values certified by NIST for various shear rates 47. We 
would prefer a fluid with known N 2 values, but to our 
knowledge no such fluid exists. Figure 2 displays the 
pressure that we measure as a function of radial position 
during shear flows of the NIST standard material. As 
expected, the pressure is greatest near the tip of the 
cone--this is a manifestation of the Weissenberg effect 
which is also responsible for the rod-climbing phenom- 
enon. For each shear rate, it is observed in Figure 2 that 
the data points fall along a single straight line, in 
concordance with equation (6). Two very important 
conclusions can be drawn from this simple observation. 
First, the NIST material does achieve a homogeneous, 
one-dimensional shear flow in the cone-and-plate rheo- 
meter. Second, the pressure transducers are sufficiently 
small to justify the approximation that they measure the 
local pressure. For each shear rate, one can integrate the 
measured pressure distribution over the surface of the 
plate to obtain an estimate of N1. The N 1 values thus 
obtained are compared to the NIST certified values in 
Figure 7, with excellent agreement over a wide shear rate 
range. Since the data satisfies both of the consistency 
checks discussed in the Experimental section, it is 
concluded that we can measure the true pressure 
distribution during shear flows of the NIST reference 
material. The Experimental section also describes how 
one can estimate N 2 by extrapolating the measured 
pressure distribution to the rim of the cone-and-plate. 
Figure 8 contains the normal stress ratio ~ = -  NE/N 1 
as a function of shear rate. Ignoring a possible weak 
dependence of ~O on shear rate, it is estimated that 

= 0.15 _+ 0.02. NIST describes this standard material as 
a solution of polyisobutylene in cetane, and we have 
found no evidence that ff has ever been measured 
previously for this fluid. From molecular theory, one 
would expect ~b_~0.28 for a highly concentrated, fully 
entangled polymer solution 24, and ~O~-0 for a dilute 
polymer solution 59'6°. The fact that the measured 
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Figure 7 First normal stress difference as a function of shear rate for 
NIST rheology standard: estimated from measured pressure distri- 
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Figure 9 Net vertical pressure force as a function of radial position 
in cone-and-plate rheometer for the Boger fluid. Shear rates (s- 1): 2.31 
(11); 7.3 (x ) ;  14.6 ( + )  

value is intermediate between these two limits is con- 
sistent with our impression that the material is a 
moderately concentrated solution. 

For the Boger fluid, Figure 9 shows the measured 
pressure distribution as a function of radial position. 
Once again the pressure is a logarithmic function of 
position, in accordance with equation (6). Integrating the 
pressure distribution yields N 1 values very close to those 
already presented in Figure 5. There is a very informative 
difference between Figures 2 and 9 which is immediately 
apparent. The net pressure force ( -  1700- Po) extrapolated 
to the rim of the cone is very close to zero for every shear 
rate in Figure 9. By contrast, the net pressure force at 
the rim systematically increases with shear rate in Figure 
2. Equation (6) indicates that the net pressure force at 
the rim is given by - N 2 .  Thus by visually comparing 
Figures 2 and 9, one can immediately conclude that N 2 
is much smaller in magnitude for the Boger fluid than 
for the NIST material. The measured pressure distri- 
butions are next used to calculate the normal stress ratio 

displayed in Figure 10. All of the data points indicate 
that N2 is negative, and very small in magnitude relative 
to N1. The best estimate is that ~O =0.01 +0.01, with no 
discernable shear rate dependence over the range 2-15 s- 1. 

This low value of ~k is consistent with the N 2 
measurements reported for a polyacrylamide Boger fluid 
by Keentok et al. 44. However, as discussed earlier, Hu 
et al. 45 estimate a much higher value of ff for a 
polyisobutylene solution which may or may not be a 
Boger fluid. Modern molecular theories appropriate to 
dilute solutions of monodisperse polymers also predict 
that ~, is close to zero 59'6°. This is relevant because dilute 
solution molecular theory is often assumed to describe 
Boger fluids at low deformation rates 1°'26. The normal 
stress ratio ~O has never been measured for a conventional 
dilute polymer solution. 

Rotating rod viscometer 
The P ger fluid readily climbs the shaft of a rotating 

rod at ;.5°C, achieving a height of over 1 cm at a 
rotational speed of only 2 Hz. It is observed that other 
polymeric liquids such as power law fluids climb consider- 
ably less. Consequently we have much greater confidence 
in the relative accuracy of the rod-climbing method when 
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it is applied to the Boger fluid. One disadvantage of the 
Boger fluid is that it exhibits a rather large static climb 
hs. As discussed in the Experimental section, the value 
of hs determines the lower limit of the rotational speed 
range that we investigate. We rearrange the theoretical 
rod-climbing equations into a form in which h~ does not 
appear (see below). Consequently, uncertainty in the value 
of hs does not affect the calculated Boger fluid properties. 

In order to calculate the Boger fluid material functions 
appropriate to shear flow, the rod-climbing measure- 
ments must be performed in the second-order regime 
where equation (7) applies. Here 09max is defined as the 
rod-rotation speed below which second-order behaviour 
is observed. To estimate 09 . . . .  we first follow a procedure 
similar to that employed in previous rod-climbing 
studies 45'4s'56. Figure I 1 contains a plot of h -  h~ against 
092 for two different rod sizes (a=3.175 and 1.588 mm). 
Here h~ is the height of climb at a conveniently chosen 
low rod rotation speed. According to equation (7), this 
plot should yield a straight line. A departure from 
linearity at large co may then be attributed to higher order 
terms in the equations of motion. Following this procedure 
with the data shown in Figure 11, it is estimated that 
COmax~2.4Hz. An alternative procedure was also 
employed which provides a more sensitive test for 
second-order behaviour. Assuming only that h-h~ has 
a power law dependence on 09, the data itself is used to 
determine the power law exponent m which best fits the 
data. When m is close to 2.0, it is concluded that 
second-order theory applies. To apply this procedure, a 
power law version of equation (7) is used to predict the 
difference in h between two different rod-rotation speeds, 
091 and 092: 

h(092) - -  h(091 ) = C(092)" - C(co 1 )"1 (8) 

where C is equal to: 

4aft 
C - (8a) 

2 ~ P g ( 4 ~  + a ~ p g  ) 

Note that the static climb h, does not appear in equation 
(8). By choosing various 091 and e9 2 values below co . . . .  
one can determine the m value which allows equation (8) 
to best fit the data. Considering the data of Figure II, 
we estimate m=2.1 _+0.2 for the smaller rod, and 
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Figure l l  Climbing height as a function of the square of the rod 
rotation speed for the Boger fluid. Rod radii (mm): 3.175 ( + ); 1.588 ( O ) 
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m = 2.0 + 0.1 for the larger rod. Thus second-order theory 
predicts the dependence of the measured climb on rod- 
rotation speed. Equation (7) also predicts the dependence 
of the climb on the rod radius. To test this prediction 
with the data of Figure l 1, we require the surface tension 
of the Boger fluid, which was measured by the Wilhemy 
plate technique 5s'61 ( ?=0 .027+0 .001Nm- t ) .  For a 
given rod-rotation speed, equation (7) predicts that h - hs 
increases with rod diameter (provided inertial effects are 
negligible). In Figure 11, it is clear that the Boger fluid 
does more readily climb the larger rod. Equation (7) 
predicts that the climb should be 69% greater for the 
larger rod in Figure 11, and the actual experimental 
difference is 60%. In summary, then, all tests that we 
can devise indicate that the Boger fluid does obey the 
second-order theory over a rather large rotational speed 
range. Within this range, the data for the smaller rod in 
Figure 11 is used to estimate that the climbing constant 
in equation (7) has the value f l = l . 2 8 _ 0 . 0 1 P a s  2. 
Because the 2 value for this rod is over 20, edge effects 
on the data should be minimal (see Experimental). 

Next an attempt is made to use the measured climbing 
constant to estimate the Boger fluid material functions 
in shear flow. According to second-order theory: 

fl= 0.5~° + 2.0~° = 0.5~°(1-4~0 °) (9) 

where 
i]/0 0 0 = - q L / ~ l  

We now encounter the principal difficulty with the 
rotating rod viscometer--the need to independently 
estimate q,o. Furthermore, as described in the preceding 
section on cone-and-plate measurements, there is a 
controversy in the literature concerning the true value of 
qjo for Boger fluids. Consequently the material functions 
that are calculated via equation (9) will depend on the 
position one takes with respect to this controversy. 

Recall that the value of W1 has been accurately 
determined in the shear rate range 2-15 s -~ via cone- 
and-plate measurements. Within this range, the plateau 
value of ~1 is 2.65+0.1 Pa s 2. Substituting the plateau 
value of W1 into equation (9), one calculates that the 
normal stress ratio ~O°=0.01+_0.01. This value is in 
excellent agreement with the independent measurement 
of ff via the flush-mounted pressure transducers. 

However, less reliable cone-and-plate data for shear 
rates below 2.0 s-~ indicates that the true value of Wo 
is greater than the plateau value (Figure 6). This data is 
less reliable because of the low stress measurements 
required, and because we could not independently check 
these measurements with our flush-mounted pressure 
transducers. If one nonetheless assumes that this low 
shear rate data is accurate, then it is clear from Figure 5 
that ~o is at least 3.5 Pa s 2. Substituting this value of 
wo into equation (9), one calculates a normal stress ratio 

o = 0.07. 
To summarize, estimates of N 2 from the rotating rod 

vlscometer vary considerably, depending on the estimated 
zero shear rate limit of hVl . Consequently we have more 
confidence in the N 2 values measured with the cone-and- 
plate rheometer than with the rotating rod viscometer. 
Assuming the N 2 values determined via the cone-and- 
plate rheometer are correct, there are three possible 
interpretations of the rod-climbing results. First, one 
might reject the low shear rate data in Figure 6 as being 
unreliable. In this case, both N 2 measurement techniques 
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predict that  - N 2 / N  1 is very close to zero. Second, one 
can retain the low shear rate data in Figure 6. In this 
case, the rotat ing rod viscometer predicts that  - N 2 / N  1 

is >0 .07  in the limit of zero shear rate. However,  this 
possibility seems unlikely, because the data  for - N 2 / N  ~ 

in Figure I0  shows no evidence of  approaching this limit 
at low shear rates. A third possibility is that  we have not  
investigated low enough rod-rota t ion speeds to observe 
the true second-order  flow regime. The most  appropria te  
method for determining the limit of  the second-order  
regime is from the rod-climbing data itselP s, and this data 
is entirely consistent with second-order  theory. Alterna- 
tively, the limit of  the second-order theory can be roughly 
estimated using cone-and-plate data,  if it is assumed that 
the rod-climbing flow is equivalent to shear flow on a 
local level*. Also assuming that the Boger fluid viscosity 
is constant ,  then one can easily show that the maximum 
shear rate in a given flow is twice the rod angular  velocity 
co. The minimum value of 09 studied was 0.8 Hz, due 
to the large static climb of  the Boger fluid. Thus the 
minimum value of the shear rate at the rod places the 
rod-climbing flow within the plateau region for W1 in 
Figure 6. According to Quinzani et al. 39, the plateau 
region is not the true second-order regime, but a 
'pseudo-second-order '  regime. Thus perhaps the rod- 
climbing measurements  reflect this pseudo-second-order  
regime observed in the cone-and-plate  rheometer.  One 
might further speculate that  the second-order  theory still 
describes rod-climbing in the pseudo-second-order regime, 
provided one replaces Wo with the plateau value of  W1 
in equat ion (7). Such an interpretation would explain 
why the rod-climbing data  is consistent with the pre- 
dictions of second-order  theory. This interpretation of 
the rod-climbing data  would also yield an estimate for 
N 2 very close to the value independently measured with 
the cone-and-plate rheometer.  

C O N C L U S I O N S  

A rheometer  has been constructed which can accurately 
estimate N2 by measuring the pressure distribution 
during shear flow. Second normal  stress data  is reported 
for a typical Boger fluid, and for a s tandard polymer  
solution supplied by NIST. Compar ing these two polymer 
solutions, one finds that  the Boger fluid has the much 
smaller IN2[ value: - N 2 / N I = O . O 1 - F O . O 1 .  The rod- 
climbing method is also applied to the same Boger fluid, 
with comparable  results for N2. However,  the rod- 
climbing estimates of N 2 are subject to larger uncer- 
tainties, due to difficulties in extrapolat ing Boger fluid 
properties to zero shear rate. 
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* This is similar to the 'heuristic' treatment of rod-climbing discussed 
in reference 57 
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